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CAUXIUUTONS OF CIiM13ERIJNG’I’E!03VAPORE?X VAR1OUS PROPEIUNTS

By Richard J. Priem

Vaporization rates were calculated for drops of ~-heptane, ammonia,
hydrazine, oxygen, and fluorine. The percent propellant vaporized is

s correlated with an effective chamber length for various spray conditions,
r-l and various engine-alesign and operating parameters. The results show
$ that the effective chamber length required to vaporize a given high per-
* centage of propellant is the shortest with oxygen and incre~es for

fluorine, heptane, ammonia, and hydrazine in that order.

INTRODUCTION

Calculations were reported in references 1 and 2 for the rate of
fuel vaporization in the combustion chamber of a n-heptane - oxygen rocket
engine. IIowthe vaporization-rate calculations c=uld be used to predict
combustion efficiencies and to design combustors was also indicated.
The results of these calculations, based on ~ combustion model in which
vaporization of the fuel was rate controlling, showed how vsrious design-
and operating-parameter changes would affect the vaporization rates of
~-heptane drops burning in oxygen. Reference 2 also indicated that a
small nuuiberof large drops that do not vaporize completely may %e re-
sponsible for much of the loss in rocket-engine performance. Experimental
results obtained with an engine (ref. 3) using ~-heptane as the fuel
agreed with the calculations for sprays having geometric standard devia-
tions of 2.5 and mass median drop radii of 70 to 280 microns depending
on the type of injector.

This report covers the additional calculations made at the NACA
Lewis laboratory to determine the vaporization rates of oxygen, fluorine,
ammonia, and hydrazine in rocket engines. The results axe presented in
terms of an effective chamber length required to vaporize a given percent
of the propellant. The analysis assumes that the vaporizing propellant
is burned instantaneously at stoichiometric conditions. The analysis
further assumes that there is one-dimensional steady-state flow and that

●



2 NACA TN 3883

all drops sre produced at the injector face and have equal velocities.
The model and equations of reference 1 are used to determine the veloc-
ity, mass, and temperature of the indiviilual-drops at various distances
downstream.

METHOD

The calculation used the model, the iteration technique, and the
following equations from

Mass-transfer rate,

Heat-transfer rate,

Drop-heating rate,

Drop acceleration,

Gas velocity,

Drop-size distribution,

references 1 and 2:

w= AI@

qv = Ah(T - Tt)Z

dT% ~ - WA

%=-

dv ~ CD~~2
—=-.
de 8 pzr

L1
-=1-.. z ‘imi ,0%in

$ exp [u]2
in Q-

MM
-i in ag

(1)

(2)

(4)

(5}

(6)

For calculation purposes the propellant was assumed to bezi~ five drop-
size groups, which were arbitrarily chosen from equation (6) as those
equal to 10, 30, 50, i’O,and W perce@ of the wss in ~OPS smaller
than the drop radius. With a median drop radius of 75 microns and a
standard devtation of 2.3 the five drop radii selected by this method

.
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* NACA TN 3883 3

. were 25, 48, 75, 120, and 225 microns. The number of drop in each group
was so chosen that each group had 20 percent of the total mass. The
symbols used in this report sre defined in appendix A.

The equations were solvedby an iterative procedure as described
in reference 4. The average physical properties in the mantle surround-
ing the drop were also determinedly the method described in reference 4.

g
Table I shows the design and operating conditions used in the calculations.
Append& B shows equations used to describe the physical properties for

d heptane, smmonia, and hydrazine vaporizing in a gaseous-oxygen atrnos-
pherej oxygen vaporizing in a gaseous-heptane atmosphere, and fluorine
vaporizing in a gaseous-hydrogen atmosphere.

RESULTS AND DISCUSSION

The results of the calculations are droplet histories, examples of
which are shown in figure 1. Droplet temperature, droplet velocity,
gas velocity, percentage of mass vaporized, and valorization rate me
shown at various chsmber lengths for ~-heptane, ammonia, hydrazine,
oxygen, and fluorine. The conditions used in the calculations shown
in figure 1 are indicated in table I. The initial temperature of heptane
and hydrazine was taken at room temperature. Ammonia was arbitrarily
taken at its normal boiling point while the initial temperature for
fluorine and o~gen corresponds to the normal boiling point of nitrogen.
The effect of selecting other temperatures and conditions is indicated
in reference 1 and later in the Correlation of Results section.

Temperature Histories

The temperature histories of the small drops (25 microns), median
drops (75 microns), and large drops (225 microns) in the spray are
shown in figure l(a) for five propellants. The calculated temperatures
rise to a steady value corresponding to a wet-bulb temperature. The
wet-bulb temperature and corresponding vapor pressure are tabulated in
the following table for the various propellants. Also t&bulated is the
ratio of the distance required to attain the wet-bulb temperature to
the distance required to vaporize the drop.

—

Propellant Wet-bulb Vapor pressure Ilength to wet bulb
tempera- at wet btib, Length to vaporize
ture, lblsq in.

%

Heptane 845 133 1/6
H@azine 860 165 @5
Ammonia 555 205 1/15
Oxygen 235 275 1/15
Fluorine 220 255 1/15
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Gas-Velocity Eistories .- *

The average velocity of the vapori~ed and burned propellant at
various positions down the chamber is shorn-in figure l(b). For all
propellants this gas velocity initialQ” increases rapidly and then
asymptotically approaches the final gas:velocity. The gas-velocity
curves for oxygen and fluorine sre about the same (liquid oxygen being
slightly higher than fluorine) and were’higher than the other three
propellants. The lowest gas velocity
The ranking order of propellants with
it at a fixed chamber length was (1)
(4Y ammonia, and (5) hydrazine.

Droplet-Velocity

curve was oltained with hyitrazine.
respect to decreasing gas veloc- %
oxygen, (2) fluorine, (3) ~-heptane~ 8

Histories *’

Droplet-velocity curves for the small-, median-, and large-diameter
&rops are shown in figure l(c) for the five propellants. The velocity

“*

of the drop when it is 99 percent vaporized_is indicated by the solid.
symbol. The lowest velocity at complete vaporization was obtained with -
the high-density fluorine. The small drops-acceleratefaster than the_
larger drops; thus, a mixing effect occ~s.~ecause of the relative mot_ion - ~
of the drops.

Mass Histaries

Curves showing the percent mass vaporized of the small, median, and
large drops in the spray as well as the average for the spray are shown
in figure l(d) for the five different propellants. The order of the
propellants, based on vaporization rate; was (1) o~gen, (2) fluorine,
(3) n-heptane, (4) ammonia, and(5) hydrazine. Theshapesofal-l the
curv~s were simiw with the exception.of n-heptane which crosses the
atmnoniacurves. W curves show that in 2-inches the small drops of
all propellants are almost completely vaporized. However, in 2 inches
only a small percentage of the large drops was vaporized.

Vaporization-Rate Histories

The total-vaporization-rateper unit-length curves (fig. l(e)) are
similar to those shown in references 1 and 2. There are two peak points
and a minimum for each propellant. Th highest peak vaporization rate
is obtained with fluorine. Second highest peak is with oxygen, third
with ammonia, fourth with heptane, and the lowest peak occurs with hydra- , .
zinc. The peak values occur at differetitpositions in the cham%er with
the various propellants. The peak occurs glosest to the injector face
with oxygen and fluorine. The peak is the farthest from the injector ,_ . _
with heptane and hydrazine. Ammonia falls between the two extremes.
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Correlation of Results

The calculated results obtained for the conditions listed in table I
were correlated for each propellant. Percent mass vaporized and unvapor-
ized curves for sprays having a standard deviation ag of 2.3 were
plotted against effective length in figure 2 for each propellant. This
deviation represents a spray in which 68.23 percent of the mass is in
the tiop-size range between %&g and a&g,M” The correlation of

3
;U results was accomplished by modifying chamber length with

+ obtain an effective length.
a factor to

L@” %~~:%. 9xlo-5
Effective length =

(1 - q)
o.404;~5v:. 75

This factor was obtained from crossplots of the lengths required tou
vaporize 90 percent of the mass. The correction factor is slightly dif-
ferent from that determined in references 1 and 2. The critical tem-
perature was used to obtain a reduced initial temperature Tr. The term

(1 - !l?r)was used to indicate that the model of va~rization does not

apply when the initial temperature is &eater than the critical.tempera-
ture (in this situation Tr >1 and a negative effective length is ob-

tained]. In addition to these changes, it was found that the exponents
on pressure and final gas velocity obtained for heptane in references
1 and 2 did not fit all propellants; therefore, new exponents were de-
termined for these parameters.

The spread in the effective length required to achieve a given
percent vaporized was greatest in the 20- to 30-percent vaporized region
as was also found in references 1 and 2. W variation in the position
of the inflection point in the mass vaporized curve prduced most of
the spread. The plot of percent-mass unvaporized as a function of ef-
fective length gave almost a single curve for each propellant.

Correlated results for vsrious standard deviations of the five
propellants are shown in figure 3. With all propellants, increasing
the standard deviation of the spray increased the effective length re-
quired to vaporize a given high percentage of the propellant. The lines
in figure 3 represent the log mean effecttve length for various operating
conditions. The results of cold-flow spray studies (ref. 5) indicate
that rocket-engine sprays have a standard deviation of about 2.3; there-
fore, the results shown in figure 2 should be applicable to most rocket-
engine systems. This was verified in the comparison of experimental
and calculated results of reference 2.

.



CONCLUDING REMARKS

NACA TN 3883 &

.

Calculations were made to determine the vaporization rates of liquid
drops for ~-heptane, ammonia, hydrazine, oxygen, and fluorine. The cal-
culations were made for each propellant with vsrious spr~ conditions,
and vsrious engine-design and operati~ psreuuetersto show how these
vsriables would affect the vaporfzatiotirtiteand chamber length required
to vaporize the drops. The results are correlatedby an effective length
for each propellant. The calculations have shown that the effective
length required to vaporize a given higjhpercentage of propellant is “!

the shortest with oxygen and increasesfo<jfluorine, Q-heptane, ammonia, 1[
and hydrazine, in that order.

Lewis Flight Propulsion Laboratory
r

National Advisory Committee for Aeronautics
Cleveland, Ohio, June 2, 1958 &
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APPENDIX A

SYMBOLS

surface srea of drop, sq in.

constant for mass distribution>
fil: ag

coefficient of drag for spheres, dimensionless

specific heat at constant

diffusion coefficient, sq

pressure, Btu/(lb)(OF)

in./see

heat-transfer coefficient, Btu/(sq in.)(sec)(°F)

coefficient of mass transfer, sec-1

thermsl conductivity, Btu/(in.)(see)(°F)

chamber length, in.,

molecular weight of propell.ant~

mass median drop “radius,in.

mass of ‘li[tdrop, lb

lb/mole

mass of “i” drop at beginning of time, lb

number of drops in group of “i” sized drops

chamber pressure, lb/sq in.

vapor pressure of liquid, lb/sq in.

heat-transfer rate of drop, Btu/sec

percent of mass in drops smaller than “r”

drop radius, in.

temperature of gas, %
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Tc

TZ

Tr

T

u

u

‘fin

v

w

z

a

e

A

P

P

‘g

critical temperature of propella@, ‘R

temperature of liquid drop, ‘R

reduced temperature, Tt,o/Tc ,

mean gas temperature, OR

velocity difference between gas and drop, in./see

velocity of gas in chamher, in./see

final velocity of

droplet velocity,

vaporization rate

correction factor

correction factor

time, sec

gas, in.~sec .

/in. sec

of fuel, lb/see

for heat transfer, dimensionless

for mass transfer, dimensionless

latent heat of vaporization, Btu/lb

viscosity, lb/(in.)(sec)

density, lb/cu in.

r, at R = 84.13geometric standsrd deviation, ~
at R = 50.0

Subscripts:

2 liquid fuel

m vapor mixture

o initial condition

P combustion products

v vapor mixture

NACATN 3883
.
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APPENDIX B

PHYSICAL PROPERTIES

Heptane with Gaseous Oxygen

Density of liquid,

: pz = 3.1662x10-2 -

*
Heat of vaporization,

4 h= 139.9 +

9.5355x10-6TZ - 6.945X10-8T~, lb/cu in.

0.181 Tz - 2.7875x10-4T~,Btu/lb

Specific heatu

; Specific heat

Specific heat

of liquid,

cp,2 = 0.231 +5.62XL04TZ, Btu/(lb)(°F)

of heptane vapor,

Cp,v= 0.5755 +L805x10-%, Btu/(lb)(°F)

of combustion products,

~,p = 0.2898 + 4.07Xl_0-%, Btu/(lb)(°F)

Thermal.conductivity of heptane vapor,

~ = 2.914x10-8 +5.847X10-u~, Btu/(in.)(sec)(°F)

Thermal conductivity of combustion products,

~ = 1.3349x10-7 + 3.411JXL0-l%?,Btu/(in.)(see}(“F)

Vapor pressure,

hp = 1.1.94763- 5255.89687/(Tz -

Viscosity of heptane vapor,

102.58), lb/sq in.

h= 2.106x10-7 -t-7.690XL0-%} 13/(in.)(sec)

Viscosity of combustion products,

%?=
5.5615Xl.0-7+ 1.4214X10-%, lb/(in.)(sec)
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Diffusion coefficient

D = [-9.815X10-4 -t

of vapor mixture,

1.973xlo-6z+ 1.1319xlo-9(F)@gQ,

‘ Molecular weight.of combustion products,

Density of Liquid,

Pz = 0.023079

%=31, lb/mole

Oxygen with Gaseous Heptane

.

sq in./sec

i.2.7359x10-4Tl - 9.9465xl.0-7T~,lb/cu tn.

Heat of vaporization,

A = 61.332 +0.5916 Tz - 2i48x10-3T:,Btu/lb

Specific heat

Specific heat

Specific heat

of liquid,

~,z = 0.3726 + 2.0482x10-4T~, Btu/(lb)(°F)

of oxygen vapor,

~,v = 0.21333 + 2.2111X10-%, Btu/(lb)(°F)

of combustion products, ~ .-

Cp,p = 0.2898 + 4.07X10-5~, Btu/(lb)(%)

Thermal

Thermal

conductivity of oxygen vapor,

~ = 2.6611xl.0-7+ 3.4057x10-1.%,Btu/(in.)[see)(%)

conductivity of.combustion products,

~ = 1.3349x10-7 + 3.4111x10-~@, Btu/(in.)(see)(°F)

Vapor pressure,

in p = 11.9584 - 1476.4912
3.5680\)

lb/sq in.
(T2 -

.
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viscosity

Viscosity

Diffusion

of oxygen vapor,

b = 2.250CDU0-7 + 1.1702x10-%, lb~(in.)(sec)

of combustion products,

%=
5.5615x10-7 +1.4214x10-~, l../(i)(sec)c)

coefficient of vapor mixture,
.<
G D =[-2.36396~0-3 + 5.7897Xl.0-%’+ 2.87685x10-g@)2]~, sq in./sec

Molecular weight of combustion products,

i
%=31, lb/mole

a’ Ammonia with Gaseous O~gen
j

Density of liquid,

: Pz = 30~3955m0-2 - 6.0219fi0-6TZ - 2.23169ti0-8Tf,lb/cu in.

Heat of vaporization,

Specific

Specific

Specific

h

heat

heat

= 676.362 + 0.32247 Tz - 1.2UM.0-3T?, Btu/lb

of liquid,

Cp,z = 0.8314 + 5.7993x10-%3, Btu/(lb)(°F)

of aumonia vapor,

Cp,v = 0.60931 + t3.31.361X10-5~,Btu/(@ (OF)

heat of combustion products,

~,p = 0.403578 + 6.996x10-6~, Btu/(lb)(OF)

Thermal conductivity of ammonia vapor,

~ = 4.6853Xl.0-7+ 3.552XL0-l@, Btu/[in.)[see)(°F)
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Thermal conductivity of combustion produgts,

~ = 5.1069&10-8 + 7.616145x10-?%,

Vapor pressure,

NACA TN 3883
%

.

Btu/(in.)(see)(°F)

lnp= 13.1485 - 3899.209
(T2 - 58.2354)) lb/sq in.

Viscosity of amnonia vapor, 2
N
o

%= 1.07097x10-6 + 8.11607x10-1%, lb/(in,)(sec)

Viscosity of combustion products,
P

‘P =
1.64352x10-7 -I-2.45252x10-9~, lb/(in.)(sec)

Diffusion coefficient,
“

D= (-4.87304x10-2+4.01198x10-%-8.358x10-1%2) ~, sqin./sec

Molecular weight of combustion products,

~. 24, lb/mole

Hydrazine with Gaseous Oxygen

Density of liquid,

P~ = 3.062318x10-2 +4.028897)U0-5TZ - 5.54321x10-8T.~,lb/cu in.

Heat of vaporization,

1= 730.747 - 0.3591305 TZ -t1.214X10-4Tf,Btu/lb

Specific heat of liquid} .

Cp, ~ = 0.589125 + 2.80708x10%2, Btu/(lb)(°F)

Specific heat of hydrazine vapor,

Cp,v = 0.3360 + 1.804x10-4~, Btu/(lb)(°F)
—

.

-



NACA TN 3883
.

Specific heat of combustion products,

%,P = 0.403578 + 6.996xI.0-6~,Btu/(@(°F)

‘I%rmsl conductivity of hydrazine vapor,

~=1.23753x10-8 +2.230358fi0-1~, Btu/(in.)(sec)(O.F)

g Thermal conductivity of combustion products,
F
+

~ = 5.10692xLO-8 + 7.616145x10-Z%, Btu/(in.)(sec)(°F)

Vspor pressure,

4

.
Viscosity of

%

viscosity of

lnp= 14.328787 - 7363.22
(TZ - 63.1713)>

lbjsq in.

hydrazine vapor,

= 4.19981x10-8 + 9.581164x3.0-1%, lb/(in.)(sec)

combustion products,

.

%
= 1.64352x10-7 + 2.45252x10-g~, lb/(in.)(sec)

Diffusion coefficient of vapor mixture,

D= (-5.3537x10-4+3.1387w0-6~ +3.37045fi0-52) ~, sq in./sec

Molecular weight of combustion products,

‘P = 24, lb/mole

Fluorine with Gaseous Hydrogen

Density of liquid,

pz = 6.846x10-2 - 3.036xL0-5TZ - 3.9308XL0-7T~, 1%/cu in.

Heat of vaporization,

A= 48.8196 +0.4993xT3 - 2.2932x10-3T~,Btu/lb

13

.
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Specific heat

Specific heat

Specific heat

NACA TN 3883
-

of liquid,

Cp>z = 0.349 -i-1.21mo-41! ~; Btu/(lb)(*F)

of fluorine vapor,

Cp,v= 0.223994 +1.667x10-6~, Btu/(lb)(°F)

of combustion products,

c~,p = 0.32332 + 2.068x10-5~, Btu/(lb)(°F)

Thermal conductivity of fluorine vapor,

~= 2.7606x10-7 +3.47122x10-1%, Btu/(in.)(sec)(°F)

Thermal conductivity of combustion products,

~ =1.0765x10-7 +4.31280%L0-?%!,Btu/(in.){sec)(OF)

Vapor pressure,

viscosity

viscosity

Diffusion

lnp= 12.3171

of fluorine vapor,

~ = 1.2591x10-6

1482.B545
(Tt - 2.5645}> lb/sq in.

+ 1.584x10-%, lb/(in.)(sec)

of combustion products,

%?=
2.60098x10-7 -t1.04178~0-g~, lb/(in.)(sec)

coefficient of vapor mixture,

D . [-4.573~0-3 + -1.078xl.0-%+ 5.421X0-’@)2] ~, sq in./sec

Molecular weight of combustion products,

~= 20, lb~mole

P

“

-.
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TABLE I. - RAtWE OF CONDI’lTONS UW?iD FUR CALCUMTIONS

InitM drop tewrature, % M.a8s Geo- Initial lkhlal. Clmmber I

rHep -
tane

I

400

%00

,,

7(X

!lnmo-

d.a

300

’400

v

5(XI

m
median metric arop w pressure,

Jydra- Oxy - Flue- drop stand-’ velocity# velocity,
zine gen rlne radius, - a.e-

%g,w viatlon, in~~ec ‘fin’
l~l;~ In.

In.lsec
microns %

I 1 I I I 1 1
# I t

75 2.3 1200 9,600 w

%00 %40 %40 75 %.3 9200 %,600 %co

25 2.3 lzco 9,600 303
b

7

.,
#

3.6 lm 9,600 w

1 Y 225 2.3 1200 9,600 300

700 2m 220 75 2.3 1200 9,600 m

1.0 1200 9,600 300

1.34 MM) 9,600 300

2.3 600 9,600 3(XI

12(X) 2,400 3m

, I ,

9,6(X 150

1
600

19,200 300

2400 9,603 500
r

%onditions used for cal,culat Ions presented in figs. 1 to 5.

1 ,.
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